AXO Case Studies

Real-world examples of Agent Experience Optimization implementations with documented before/after comparisons and measured outcomes.

E-commerce Product Documentation

Mid-size electronics retailer optimizing product pages for AI agent discovery

+180% Agent Citations
March 2024 - May 2024

Before Optimization

Issues Identified:

  • • No structured data markup
  • • Generic product descriptions
  • • Missing technical specifications
  • • No clear pricing information
  • • Poor heading structure
Sample Before HTML:
<div class="product">
  <h2>Amazing Wireless Headphones</h2>
  <p>Experience incredible sound quality with our premium wireless headphones. Perfect for music lovers!</p>
  <div class="price">$199.99</div>
</div>

After Optimization

Improvements Made:

  • • Added Product schema markup
  • • Detailed technical specifications
  • • Clear pricing and availability
  • • Proper heading hierarchy
  • • FAQ section with common questions
Sample After HTML:
<article itemscope itemtype="https://schema.org/Product">
  <h1 itemprop="name">Sony WH-1000XM4 Wireless Noise-Canceling Headphones</h1>
  
  <div itemprop="description">
    Professional-grade wireless headphones with industry-leading noise cancellation technology. 30-hour battery life, Hi-Res Audio support.
  </div>
  
  <div itemprop="offers" itemscope itemtype="https://schema.org/Offer">
    <span itemprop="price">199.99</span>
    <span itemprop="priceCurrency">USD</span>
  </div>
</article>

Measured Results (8 weeks)

+180%
AI Agent Citations
+45%
Organic Traffic
+23%
Conversion Rate

API Documentation Optimization

SaaS platform improving developer documentation for AI agent consumption

+240% Developer Queries
January 2024 - March 2024

Before Optimization

Documentation Issues:

  • • Scattered endpoint information
  • • Inconsistent example formats
  • • Missing error code documentation
  • • No machine-readable API spec
  • • Vague parameter descriptions
Before: Vague Documentation
## User API
Get user information by sending a request to our user endpoint. 
Returns user data in JSON format.

Example: GET /api/user

After Optimization

Improvements Made:

  • • OpenAPI 3.0 specification
  • • Detailed parameter descriptions
  • • Complete example requests/responses
  • • Error code documentation
  • • Rate limiting information
After: Structured Documentation
## GET /api/v1/users/{userId}

Retrieves detailed information for a specific user account.

### Parameters
- userId (string, required): Unique user identifier (UUID format)

### Response (200 OK)
{
  "id": "550e8400-e29b-41d4-a716-446655440000",
  "email": "user@example.com",
  "created_at": "2024-01-15T10:30:00Z"
}

### Error Codes
- 404: User not found
- 401: Authentication required

Measured Results (8 weeks)

+240%
AI Developer Queries
+67%
API Adoption Rate
-40%
Support Tickets

Educational Blog Transformation

Educational technology company optimizing tutorial content for AI agents

+156% Citation Rate
February 2024 - April 2024

Before: Marketing-Heavy Content

  • • "Revolutionary new approach to learning"
  • • "Game-changing methodology"
  • • Vague benefit statements
  • • No specific examples or data
  • • Poor heading structure

After: Fact-Based Content

  • • "Spaced repetition increases retention by 67%"
  • • Step-by-step implementation guides
  • • Specific research citations
  • • Concrete examples with data
  • • Clear H1-H6 hierarchy

Content Structure Transformation

Before Structure:
• Generic title: "Better Learning Methods"
• No clear sections
• Mixed heading levels
• No structured data
After Structure:
• Specific title: "Spaced Repetition: Implementation Guide"
• Clear H2 sections: Method, Benefits, Implementation
• Proper heading hierarchy
• Article schema with FAQ section

Measured Results (8 weeks)

+156%
AI Citations
+89%
Organic Traffic
+34%
Time on Page
+78%
Social Shares

Key Success Patterns

1

Structure First

Proper heading hierarchy and semantic markup showed the most immediate impact on agent discovery.

2

Specificity Wins

Replacing vague marketing language with specific facts and data dramatically improved citation rates.

3

Schema Matters

Structured data markup consistently improved agent understanding and proper attribution.